GEO-COAST '91. 3-8, Sept., 1991, Yokohama 4/6

Effects of Permeability and Loading Rate on Dynamic Stiffness of Saturated Soil
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The dynamic stiffness of saturated soil influenced by drainage condition and

loading rate is discussed. Saturated ground is dealt with as a two-phase material based on the
formulation of Biot {(Biot,1962}. A thin layer element for describing the dynamic behavior of a
fluid saturated porous layered medium is presented. The dynamic stiffness of the saturated
two-phase grounds are given comparing with those for dry soil by using the developed

formulation.

INTRODUCTION

So0il structures and foundationsg in Japanese
coastal area have often suffered from great
earthquakes. Earthquake engineering has been
playing important rcle in coastal engineering
works. In recent years it becomes more
important to design the foundations of marine
and offshore structures subjected to dynamic
loading because of coastal development.

Most of the structures in coastal area are
constructed on submerged solil deposits.
Geotechnical engineering problems with those
structures are often related to the behavior
of pore water. Typical examples of these
problems include consolidation of soft clay
and liquefaction of 1loose sand. Particularly
in liquefaction phenomena the relation
between the permeability and loading rate is
one of a critical factor to control the excess
pore water pressure behavior including both
accumulation and diffusion process. Two-phase
nature of a wmaterial 1is, of coursge, very
important. In the case of studying the dynamic
stiffness of saturated ground in relation to
the dynamic gsoil-structure interaction
effects, it is also necessary to account for
two-phase nature of the ground.

A great amount of work has been done to study
dynamic stiffness for layered soil ground or
half-space by wusing the thin layer element
(e.g. Waas,1972). These results enable us to
account for the soil properties varied with
depth and for the radiation of waves into the
far field by imposing boundary condition of
the irregular region. However those analyses
based on %total stress analysis consider only
the solid phase motion.

The object of this paper is to extend the
foregoing thin layer element to saturated
two-phase layered media and to study the
dynamic stiffness of saturated sandy ground
influenced by the permeability and loading

BASIC EQUATIONS

In general Biot formulation is effective for
describing the behavior of the fluid saturated
porous media. The basic equations used here
which are given by generalizing formulation of
Biot were presented by Zienkiewicz &
Shiomi{1984).

Full formulation of Biot (u-w form)

Eguations of motion of mixture and fluid with
static equilibirium removed are written hy
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In these equations u is the displacement of.
solid phase, W 1s the average relative
displacement of fluid phase to solid phase, p

is the density of mixture, Py is the density

of filuid alone, ksk0/ pPp g is the coefficient
of permeability per unit weight of fluid
material, n is porosity of solid, and «a,Q are
constants of Biot formulation, satisfied the
following equations.

a =1-(3 1 +2G)/3KS (5)

1/@=1/K¢ +{ @ - n)/K ¢ (8)
in which Kg is bulk modulus of sclid, Ke is
that of fluid, A and @ are Lame’s elastic

constants.
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Total stress( ¢ ) and pore pressure( w ) are
gl= |(D+ a 2gmm™)L a @m VvV || u (7)
T a@QVvT ["I w

in which m"=(1,1,0) in two dimensional case;L=
matrix operator equivalent +to the strain
definition; and D= matrix of coefficients.
And effective stress{ o ') is

c'=oc-mmx (8)

Undrained form

The relative displacement of fluid phase is
negligible wunder wundrained condition which
indicates that the permeability is small
enough comparing to loading rate. We can
derive basic equation under undrained
condition to eliminate the term related to
variable w from eguations (1) and (7).
Therefore, equation of motion is

L(D+ a *gmm™)L{ul+ o {u}=0 (9}
and total stress and pore pressure ate

{6 }= (D+a *Qmm™)L {u} (10}

n=a@V T{u} {11}

If Lame’s elastic constant( %, ) or Poisson's
ratio ( v, ) wunder undrain condition is
defined, i.e.

- 2 vy
A - A+ a ®Q = G-—(I:E*FEM)

(12)
we can write basic equations in the same way
of Jjust dry soil case. The only thing
different from dry soil case is existence of
the pore pressure. Fig.l shows the relation

between Vu and Kf. It is found that assumption

of undrain condition is equivalent to approach
the value of Poisson's ratio te 0.5.
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Fig.l Relation between the bulk modulus of
fluid material and apparent Poisson’s ratio
under undrain condition.

(n=0.375, KS=37000MPa, v =0.25, G=81.63MPa)
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APPLICATION OF THE THIN LAYER ELEMENT METHOD

The problem scolved here is in x-z two
dimensional 1linear steady state condition.
Rayleigh wave motion propagating in saturated
two~phase semi- infinite media is considered.
For simplification the geometry is idealized
by a single beam jointed to the semi-infinite
layered region as shown in Fig.2. Then unit
horizontal harmonic excitation i1is applied to
the top of beam.
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Fig.2 The system used in numerical study

Semi-infinite lavered region

When the system is subjected to harmonic
loading, the displacement across the layer
satisfying wave eqguation is expressed as the
following form.

u(x,z,t) ulz)
= exp(i w t)[H] (13)
w(x,z,t) w(z)

where [H] iIs function of x. In the case of
Cartesian co-ordinates, [H] is given by (14}

[H]=exp(-ihx)[I] (14)

where [I] is a identity matrix, and h is wave
number. Assuming the displacement in the j-th
layer varies lineally, we can write the
displacement in the Jj-th layer using a shape
function [N]

u(x,z,t) = exp(i o LI[HIINI{u} 3 j4q (15)
w(X,Z,t )l
in which [N]l=[{l1- % )I, » I] with 0 £ % =zj/Hj

£ 1, and {u}y, 3415193, Wj,U541,%W541} 38 the
displacement at j-th and (j+1)th interface.

Accordingly, equation{l) in j-th layer becomes

[W]=([K1-1 © [C}+ w <[MI)[HI[NI{u}j j4; =0 (16)

According to Galerkin’s method, discretized
displacement satisfies the following equatien.

M
% [ Jf, NTHT[W]4V- § (N"H™{ o | }ds]=0 17y
3=1



in which M is a total number of layers, { op}”

=[ T xz? g 0, 7 ] is the stress at the

boundary s.

Integrating over the region in equation (17),
the result is an eigenvalue problem of the
following form

(h®[A]+ih[B1+[E]) { ¢ }=0 (18)

Considering the equivalent nodal force at the
Xx=0 plane, we can obtain stiffness matrix [R]
across the layer in x=0 plane

[RI=(i[Al[ ¢ JLhI+[FIL ¢ 1) [ & =]17" (19)

in which [Al,[B],I{E] and [F] are matrix which
depend on the geometry and the material
properties of discrete layers, [ ¢ ]= modal
matrix given by solving equation (18); [h]l=
diagonal matrix consist of wave number that is
eigenvalue of equation (18). The detail of
these matrix can be found in (Kazama & Nogami,
1991).

Here, it 1s neccesary to note that matrix
[ # ] is not a square matrix, because the
number of effective eigenvalues obtained from
equation (18) is not the same as the degree of
freedom. It relates to absence of the shear
wave propagating in the fluid material.

sSuperposition of the stiffness matrix

The relation between the nodal forece and
displacement of the semi-infinite region in
x=0 plane is given by

Pre Ey1 Rig Bagl) %
Pagl® [Fa1 Raz Ragl] Y2 (20)
By Ri1 Fag Rag|| %

Introducing the condition wx=0 and,PZg=o in

x=0 plane, we can write reduced stiffness
matrix of the semi-infinite region

{Pygl=IRy "Ry pRypRy 1y} (21)

=[Ry1{u,}

On the other hand the dynamic stiffness matrix
of the heam is expressed as

x|l = Rxx Rxe X (22)

in which we use a consistent mass matrix for
beam. Therefore, relation between the nodal
force and displacement of total system becomes

Px+ng = Rxx + Rg Rxe Uy (23)

M Rsx Ree 8
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NUMERICAL STUDY FOR THE DYNAMIC STIFFNESS

The semi-infinite ground is divided into ten
layers as shown in Fig.3. Using the developed
formulation, we computed steady state harmonic
displacement response at the location of the
excitation force. Then, the stiffness was
computed as force/displacement and normalized
by the static stiffness for dry soil.
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Fig.3 The geometry and physical properties

Fig.4 shows the effects of the bulk medulus of
fluid material on the dynamic stiffness under
undrained condition. The stiffness for
saturated soil is larger than the one for dry
s0il since the rigidity of fluid is much
larger than the one of so0il skeleton. This
results in increasing the rescnant frequency
associated with the P-wave but not affecting
the resonant frequency associated with the S-
wave.
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Fig.4 Comparison of the dynamic stiffness
under undrained condition with one for dry
soil,

Fig.5 shows the dynamic stiffness under
variocus socil permeabilities. The coefficient
of permeabilities used here are rarying from
107 'm/s to 10" °m/s, which correspond to from
coarse gravel to fine sand. When the drainage
is permitted, the pore water diffuse more
easily for slower loading rate  (lower
frequencies) and the difference in between the
dry and drained scil response diminishes
completely at the static condition
{frequency=0). However, the diffusion becomes
more difficult as the frequency increases and
the so0il stiffness approaches to the one for
the undrain condition. In low frequency range
the maximum value of imaginary part stiffness
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for the drain condition is three times as
large as the one for dry soil. It indicates
that the system under drained condition has a
large damping factor apparently. This seems to
be influenced by the relative motion of pore
water to seil skeleton.

—— Dry Scil — —— Undrained Condition
{kf=2080MPa)
Drained Condition %——x% k0= 10""m/s
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Fig.5 Effects of the permeability on the
dynamic stiffness.

Distribution of the stress amplitude

Fig.6 shows the distribution of the stress
amplitude in x=0 plane under various
permeabilities. The stress is calculated at
the middle depth of the each layer. It is
found that the pore water pressure Iincreases
as the permeability decreases. Especially at
the position of the near surface, in spite of
large value of the total stress amplitude, the
pore water pressure amplitude is not so large
in the case of permeability less than 10"°m/s.
This is also due to rapid diffusion rate.

In this analysis the volume change due tc pure
shear stress is not taken into consideration.
The reason is that there is no volumetric
strain due to pure shear stress under elastic
condition. Thus, the principle of the pore
water pressure generation is different from
that caused by one-dimensional shear wave
motion. Under Rayleigh wave stress condition
the pore water pressure varies in accordance
with wvariation of the teotal stress. During
actual earthquake complex stresses caused by
both body wave and surface wave motion
generates the pore water pressure.
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Fig.6 Effects of the permeability on the
distribution of the stress amplitude with
depth at dimensionless frequency( « H/Vs)=2.

CONCLUSION

The thin layer element describing the dynamic
behavior for saturated two-phase layered media
was developed. Using the developed
formulation, we studied the dynamic response
of saturated s¢il comparing with that of dry
soil. It was found that the permeability and
loading rate (loading frequency) are one of
the critical factor to control the dynamic
behavior of saturated soil. It was alsc found
that the pore water pressure caused by
Rayleigh wave motion is significantly
influenced by the permeability of the ground.
However, the stress condition caused by
Rayleigh wave moticn is different from that
caused by one-dimensional shear wave motion.
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